4.2 Tests of Structural Changes

This section focuses on Chow Test and leaves general discussion on dummy variable models to other section.

4.2.1 Chow Test: Simple Example

Chow Test examines whether parameters of one group of the data are equal to those of other groups. Simply put, the test checks whether the data can be pooled. If only intercepts are different across groups, this is a fixed effect model, which is simple to handle. Let us consider two groups.

\[y = \alpha + \beta x + \varepsilon \quad \text{for all observations} \]
\[y = \alpha_1 + \beta_1 x + \varepsilon_1 \quad \text{for } n_1 \text{ observations (group 1)} \]
\[y = \alpha_2 + \beta_2 x + \varepsilon_2 \quad \text{for } n_2 \text{ observations (group 2)} \]

The null hypothesis is \(\alpha_1 = \alpha_2 \) and \(\beta_1 = \beta_2 \). If the null hypothesis is rejected, two groups have different slopes and intercepts; data are not poolable.

\[
F(J, n_1 + n_2 - 2K) = \frac{(e'e - e_1'e_1 - e_2'e_2) / J}{(e_1'e_1 + e_2'e_2) / (n_1 + n_2 - 2K)} = \frac{(SSE - SSE_1 - SSE_2) / J}{(SSE_1 + SSE_2) / (n_1 + n_2 - 2K)}
\]

where \(e'e \) is the SSE of the pooled model and \(J \) is the number of restrictions (often equal to \(K \)—all parameters). \(^2\)

In order to conduct the Chow test,

1. Run pooled OLS to get \(\text{SSE}_{\text{pooled}} \)
2. Run separate OLS to get \(\text{SSE}_1 \) and \(\text{SSE}_2 \)
3. Apply the formula

In the following example, we assume that two groups have different slopes of cost and different intercepts; there are two restrictions, \(J=2 \).

```
use http://www.indiana.edu/~statmath/stat/all/panel/airline.dta, clear
(Cost of U.S. Airlines (Greene 2003))
. gen d1=(airline<=2)
. gen d0=(d1==0)
. gen d2=(airline>=2 & airline<=4)
. gen d3 =(airline>=5)
. gen cost0=cost*d0
. gen cost1=cost*d1
. gen cost2=cost*d2
. gen cost3=cost*d3
```

First, fit the pooled model.

\(^1\) Greene 2003 (289-291), http://www.stata.com/support/faqs/stat/chow.html
\(^2\) If we want to test the null hypothesis that only intercept is different, \(J \) will be \(K-1 \) (all the slopes are equal).

http://www.masil.org
. regress output cost // pooled model

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>107.123</td>
<td>1</td>
<td>107.123</td>
<td>F(1, 88) = 880.73</td>
</tr>
<tr>
<td>Residual</td>
<td>10.703</td>
<td>88</td>
<td>.12162</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>117.826</td>
<td>89</td>
<td>1.3239</td>
<td>Adj R-squared = 0.9081</td>
</tr>
</tbody>
</table>

| output | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|----------|-----------|------|------|---------------------|
| cost | .9691952 | .032658 | 29.68| 0.000| (.9042942, 1.034096) |
| _cons | -14.128 | .4380397 | -32.25| 0.000| (-14.99871, -13.25768) |

And then fit separate models using two subsets of data.

. regress output cost if d1==0 // if airline >= 3

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>30.771</td>
<td>1</td>
<td>30.771</td>
<td>F(1, 58) = 314.51</td>
</tr>
<tr>
<td>Residual</td>
<td>5.674</td>
<td>58</td>
<td>.09783</td>
<td>R-squared = 0.8443</td>
</tr>
<tr>
<td>Total</td>
<td>36.446</td>
<td>59</td>
<td>.61773</td>
<td>Adj R-squared = 0.8416</td>
</tr>
</tbody>
</table>

| output | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|----------|-----------|------|------|---------------------|
| cost | .8454175 | .047671 | 17.73| 0.000| (.749936, .9408413) |
| _cons | -12.643 | .610876 | -20.70| 0.000| (-13.86566, -11.42006) |

. regress output cost if d1==1 // if airline <= 2

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2.805</td>
<td>1</td>
<td>2.805</td>
<td>F(1, 28) = 166.32</td>
</tr>
<tr>
<td>Residual</td>
<td>.4722</td>
<td>28</td>
<td>.01686</td>
<td>R-squared = 0.8559</td>
</tr>
<tr>
<td>Total</td>
<td>3.277</td>
<td>29</td>
<td>.11301</td>
<td>Adj R-squared = 0.8508</td>
</tr>
</tbody>
</table>

| output | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|----------|-----------|------|------|---------------------|
| cost | .514467 | .0398915 | 12.90| 0.000| (.4327507, .5961787) |
| _cons | -7.329 | .5798709 | -12.64| 0.000| (-8.516802, -6.141179) |

\[
F = \frac{(e'e - \hat{e}_1^2 - \hat{e}_2^2)/J}{(\hat{e}_1^2 + \hat{e}_2^2)/(n_1 + n_2 - 2K)} = \frac{(10.7034 - 5.6747 - .4722)/2}{(5.6747 + .4722)/(60 + 30 - 2*2)} = 31.8745
\]

. di ((10.703429-.472224836-5.6746959)/2)/((.4722224836+5.6746959)/(30+60-2*2))
31.8745

. di Ftail(2,86,31.8745)
4.393e-11

The large F 31.8745 (2, 68) rejects the null hypothesis of equal slope and intercept (p<.0000).

Alternatively, you may regress \(y \) on two dummies and two interaction terms with the intercept suppressed.\(^3\) Parameter estimates are identical to those of the above, while standard errors are

\(^3\) Therefore, \(R^2 \) and standard errors are not reliable.

http://www.masil.org
different. This estimation is handy since parameter estimates are slopes and intercepts of individual groups; any further computation is not need at all.

```
. regress output cost0 d0 cost1 d1, noconstant
```

```
Source |       SS       df       MS              Number of obs =      90
-------------+------------------------------           F(  4,    86) =  824.72
Model | 235.789788     4  58.9474471           Prob > F      =  0.0000
Residual |  6.14692073    86  .071475822           R-squared     =  0.9746
-------------+------------------------------           Adj R-squared =  0.9734
Total |  241.936709    90  2.68818566           Root MSE      =  .26735

------------------------------------------------------------------------------
output |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  cost0 |   .8454175   .0407452    20.75   0.000     .7644187    .9264162
    d0 |  -12.64286    .522126   -24.21   0.000    -13.68081   -11.60491
  cost1 |   .5144647   .0821229     6.26   0.000     .3512098    .6777197
    d1 |  -7.328991   1.193756    -6.14   0.000    -9.702098   -4.955883
------------------------------------------------------------------------------
```

```
. test _b[成本0]=_b[成本1]
   ( 1)  cost0 - cost1 = 0
      F(  1,    86) =  13.03
      Prob > F =  0.0000

. test _b[cost0]-_b[cost1], accum
   ( 1)  cost0 - cost1 = 0
      F(  1,    86) =  13.03
      Prob > F =  0.0000
   ( 2)  d0 - d1 = 0
      F(  2,    86) =  31.87
      Prob > F =  0.0000
```

More convenient way is to regress y on a regressor of interest, $cost$, an interaction term, and a dummy with the intercept included. The intercept is the intercept of the baseline group and the dummy coefficient is the deviation from the baseline intercept. The coefficient of the regressor is the slope of the baseline, while the coefficient of the interaction term is the deviation of slope from the baseline slope. That is, the intercept of compared group is 7.329 ($=-5.3139-12.6429$) and the slope is $.5145$ ($=-.3310+.8454$).

```
. regress output cost cost1 d1
```

```
Source |       SS       df       MS              Number of obs =      90
-------------+------------------------------           F(  3,    86) =  520.83
Model | 111.679602     3  37.2265339           Prob > F      =  0.0000
Residual |  6.14692073    86  .071475822           R-squared     =  0.9478
-------------+------------------------------           Adj R-squared =  0.9460
Total |  117.826522    89  1.32389351           Root MSE      =  .26735

------------------------------------------------------------------------------
output |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
  cost |   .8454175   .0407452    20.75   0.000     .7644187    .9264162
  cost1 |  -.3309528   .0916752    -3.61   0.001     -.513197   -.1487085
    d1 |    5.31387   1.302946     4.08   0.000     2.723699    7.904041
 _cons |  -12.64286    .522126   -24.21   0.000    -13.68081   -11.60491
------------------------------------------------------------------------------
```

```
. test _b[cost1]=0
   ( 1)  cost1 = 0
      F(  1,    86) =  13.03
      Prob > F =  0.0000
```

```
http://www.masil.org
```
4.2.2 Chow Test: Comparing Three Groups

What if we want to compare three groups? Let us fit two remaining models for group 2 and 3. Restrictions here are 1) slope2 is equal to the baseline slope (slope1), 2) slope3 is equal to the baseline slope, 3) intercept2 is equal to the baseline intercept, and 4) intercept3 is equal to the baseline intercept. Degrees of freedom is 84=N-(group*K)=90-3*2.

Now, include all interaction terms and dummies without the regressor of interest. The model report all parameter estimates, which are identical to the above.

F = \frac{(e'e - e_1'e_1 - e_2'e_2 - e_3'e_3)/J}{(e'e_1 + e_2'e_2 + e_3'e_3)/(n_1 + n_2 + n_3 - gK)} = \frac{(10.703 - .472 - 2.919 - .340)/4}{(1.472 + 2.919 + .340)/(30 + 30 + 30 - 3*2)} = 39.245

Now, include all interaction terms and dummies without the regressor of interest. The model report all parameter estimates, which are identical to the above.
Finally, include the regressor, two interaction terms, and two dummies excluding baseline interaction and dummy. The coefficient of the regressor is the baseline slope and the intercept is the baseline intercept. Coefficients of interaction terms are deviations from the baseline slope. As a result, the slope of group 1 is $.5144647 = -.2225778 +.7370425$ and the intercept is $-7.328991 (=.4142762-11.47175)$.

```
.regress output cost cost1 d1 cost2 d2
goose: Statistical Inferences in Linear Regression: 11
```

Hypothesis testing is identical to the above.

4.2.3 Chow Test: Including Covariates

```
http://www.masil.org
```
Now, suppose we need to include some covariates for control, load and fuel. We may regress the dependent variable on all interactions, dummies, and covariates with the intercept suppressed. Again R^2 is not reliable here. A coefficient of an interaction term is the slope of cost of the group, just as the dummy coefficient is the intercept of the group.

```
regress output cost1 d1 cost2 d2 cost3 d3 load fuel, noconstant
```

```
Source |       SS       df       MS              Number of obs =      90
-------------+------------------------------           F(  8,    82) = 1526.59
Model |  240.323102     8  30.0403877           Prob > F      =  0.0000
Residual |  1.61360768    82  .019678142           R-squared     =  0.9933
-------------+------------------------------           Adj R-squared =  0.9927
Total |  241.936709    90  2.68818566           Root MSE      =  .14028

output |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
cost1 |   1.017854   .0884737    11.50   0.000     .8418518    1.193856
d1 |  -9.777424   .7217463   -13.55   0.000    -11.21321    -8.34164
cost2 |   1.070322   .0839545    12.75   0.000     .9033093    1.237334
d2 |  -10.56474   .5832504   -18.11   0.000    -11.72501   -9.404465
cost3 |   1.108260   .0672781    16.47   0.000     .9744229    1.242098
d3 |  -11.10194   .4070026   -27.28   0.000    -11.9116   -10.29229
load |   2.041787    .398699     5.12   0.000     1.248648    2.834927
fuel |  -.4733269   .0556113    -8.51   0.000    -.5839555   -.3626983
-------------+----------------------------------------------------------------
```

This model is written as,

\[
\text{output} = -9.7774 + 1.0179 \times \text{cost} + 2.0418 \times \text{load} - 0.4733 \times \text{fuel} \quad (\text{group 1})
\]
\[
\text{output} = -10.5647 + 1.0703 \times \text{cost} + 2.0418 \times \text{load} - 0.4733 \times \text{fuel} \quad (\text{group 2})
\]
\[
\text{output} = -11.1019 + 1.1083 \times \text{cost} + 2.0418 \times \text{load} - 0.4733 \times \text{fuel} \quad (\text{group 3})
\]

Let us conduct the hypothesis test for the four restrictions.

```
.test \_b[cost1]=\_b[cost2]=\_b[cost3], notest
.test \_b[d1]=\_b[d2]=\_b[d3], accum
( 1)  cost1 - cost2 = 0
( 2)  cost1 - cost3 = 0
( 3)  d1 - d2 = 0
( 4)  d1 - d3 = 0
F( 4,    82) =  0.86
Prob > F =  0.4923
```

We may also fit the same model including the regressor of interest and excluding baseline interaction term and its intercept. Covariates remain unchanged. Note that slope2 is 1.0703 (=-.0379+1.1083) and the intercept of group 2 is -10.5647 (=.5372079-11.10194).

```
regress output cost cost1 d1 cost2 d2 load fuel
```

```
Source |       SS       df       MS              Number of obs =      90
-------------+------------------------------           F(  7,    82) =  843.67
Model |  116.212915     7  16.6018449           Prob > F      =  0.0000
Residual |  1.61360768    82  .019678142           R-squared     =  0.9863
-------------+------------------------------           Adj R-squared =  0.9851
Total |  117.826522    89  1.32389351           Root MSE      =  .14028

output |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
cost |    1.10826   .0672781    16.47   0.000     .9744229    1.242098
cost1 |  -.0904063   .0572606    -1.58   0.118    -.2043159    .0235034
d1 |  -1.324528   .8454028     1.57   0.121    -.3572557    0.006295
-------------+----------------------------------------------------------------
```

http://www.masil.org
4.2.4 Chow Test: Different Slopes of Multiple Regressors

If we assume that more than one regressor have different slopes across group, model will be complicated. But the underlying logic remains same. Let us create a set of interaction terms for the regressor load.

. gen load1=load*d1
. gen load2=load*d2
. gen load3=load*d3

First, include all interactions, dummies, and covariate fuel. Do not forget the suppress the intercept.

. regress output cost1 load1 d1 cost2 load2 d2 cost3 load3 d3 fuel, noconstant

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>240.344451</td>
<td>10</td>
<td>24.034451</td>
<td>F(10, 80) = 1207.56</td>
</tr>
<tr>
<td>Residual</td>
<td>1.59225866</td>
<td>80</td>
<td>.01990323</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>241.936709</td>
<td>90</td>
<td>2.68818566</td>
<td>Adj R-squared = 0.9926</td>
</tr>
</tbody>
</table>

| output | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------------|-----------|-------|-------|----------------------|
| cost1 | 1.014764 | .0975898 | 10.40 | 0.000 | .8205541 | 1.208974 |
| load1 | 1.817979 | .6811907 | 2.67 | 0.009 | .4623659 | 3.173591 |
| d1 | -9.754334 | .7455903 | -13.08| 0.000 | -11.23811 | -8.270562 |
| cost2 | 1.019311 | .0981769 | 10.38 | 0.000 | .8239324 | 1.214689 |
| load2 | 2.661021 | .7210198 | 3.69 | 0.000 | 1.226146 | 4.095896 |
| d2 | -10.38952 | .6108743 | -17.01| 0.000 | -11.6052 | -9.173845 |
| cost3 | 1.111908 | .0687766 | 16.17 | 0.000 | .9750386 | 1.248778 |
| load3 | 1.703393 | .7009252 | 2.43 | 0.017 | .3085071 | 3.098278 |
| d3 | -11.11345 | .4096207 | -27.13| 0.000 | -11.92862 | -10.29827 |
| fuel | -.4615669 | .0578651 | -7.98 | 0.000 | -.5767222 | -.3464117 |

. test _b[cost1]=_b[cost2]=_b[cost3], notest
. test _b[load1]=_b[load2]=_b[load3], notest
. test _b[d1]=_b[d2]=_b[d3], accum

(1) cost1 - cost2 = 0
(2) cost1 - cost3 = 0
(3) load1 - load2 = 0

http://www.masil.org
Now, include two regressors of interest, two sets of interactions, two dummies, and a covariate, excluding baseline interaction terms and its dummy. Make sure you include two regressors of interest, cost and load.

```
regress output cost load cost1 load1 d1 cost2 load2 d2 fuel
```

```
Source |       SS       df       MS               Number of obs =      90
-------------+------------------------------           F(  9,    80) =  648.89
Model |  116.234264     9  12.9149182           Prob > F      =  0.0000
Residual |  1.59225866    80  .019903233           R-squared     =  0.9865
-------------+------------------------------           Adj R-squared =  0.9850
Total |  117.826522    89  1.32389351           Root MSE      =  .14108

------------------------------------------------------------------------------
output |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
cost |   1.111908   .0687766    16.17   0.000     .9750386    1.248778
load |   1.703393   .7009252     2.43   0.017     .3085071    3.098278
cost1 |  -.0971444   .0777234    -1.25   0.215    -.2518189    .0575301
load1 |   .1145858   .9857632     0.12   0.908    -1.847146    2.076317
d1 |   1.359111   .8696813     1.56   0.122    -.3716095    3.089832
cost2 |  -.0925978   .0789714    -1.17   0.244    -.2497558    .0645603
load2 |   .9576281   1.020969     0.94   0.351    -1.074165    2.989421
d2 |   .723922   .7484569     0.97   0.336    -.7655546    2.213399
fuel |  -.4615669   .0578651    -7.98   0.000    -.5767222   -.3464117
_cons |  -11.11345   .4096207   -27.13   0.000   -11.92862   -10.29827
------------------------------------------------------------------------------
```

```
test _b[cost1]=0, notest
.test _b[cost2]=0, accum notest
.test _b[load1]=0, accum notest
.test _b[load2]=0, accum notest
.test _b[d1]=0, accum notest
.test _b[d2]=0, accum
```

```
( 1)  cost1 = 0
( 2)  cost2 = 0
( 3)  load1 = 0
( 4)  load2 = 0
( 5)  d1 = 0
( 6)  d2 = 0

F(  6,    80) = 0.74
Prob > F = 0.6152
```